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Abstract. Understanding patterns of brain development before birth is
of both high clinical and scientific interest. However, despite advances
in reconstruction methods, the challenging setting of in-utero imaging
renders precise, point-wise measurements of the rapidly changing fetal
brain morphology difficult. This paper proposes a method to deal with
bad measurement quality due to image noise, motion artefacts and ensu-
ing segmentation and registration errors by enforcing spatial regularity
during the estimation of parametric models of cortical expansion. Qual-
itative and quantitative analysis of the proposed method was performed
on 88 clinical fetal MR volumes. We show that the resulting models accu-
rately capture the morphological and temporal properties of fetal brain
development by predicting gestational age on unseen cases at human-
level accuracy.

1 Introduction

During the second and third trimester of gestation, the fetal brain grows from
a smooth shape to a complex folded structure. Understanding the processes
driving this rapid development is of strong academic and clinical interest [1].
In the last decade, in utero imaging using Magnetic Resonance Imaging (fetal
MRI), together with specialized reconstruction procedures [2] have led to a better
understanding of gross morphological fetal neurodevelopment. Various authors
have reported normative values for the developing brains’ volume, folding and
surface area. However, these studies are either based on premature neonates [3],
report global measurements [4–6] or rely on a-priori parcellations of the cortical
surface into lobar regions [7].

In this paper, we aim at computing a continuous model of fetal cortical
expansion. We build on recent advances in structured prediction [8] to regularize
parametric growth models along the cortex. We show that the resulting models
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can be used to precisely model fetal cortical expansion on a surface node level,
predict gestational age with high accuracy, and identify cortical regions that are
predictive for age.

2 Regularizing Parametric Cortical Growth Models

We propose a method allowing for the joint estimation of sets of parametric
models in a regularization framework. Modeling prior knowledge about the type
of interactions between elements of the set as graphs allows us to include this
information in the process of fitting the models to noisy data. Specifically, we
are interested in enforcing spatial smoothness of growth models on a surface. We
show how this can be achieved in the case of a special type of logistic growth
model, the Gompertz function.

Parametric Growth Modeling Simple models such as linear and polynomial
functions are commonly used to summarize observations. However, their under-
lying assumption that the observed process is unbounded is generally not valid.
Logistic functions such as the Gompertz function

f(t) = β1 + β2 exp(− exp(−β3(t− β4))) β1,2,4 ∈ R, β3 ∈ R+ (1)

on the other hand can be used to describe an asymptotically bounded pro-
cesses such as brain growth [7]. Fitting functions of this type to measurements
allows for the summarization of the observed process in terms of initial (β1) and
final (β2) quantity, as well as the timing (β4) and rate (β3) of its growth.

Graph-based Regularization Spatial relationships between observations can
be incorporated into model fitting using an appropriate regularization term. This
approach is common in imaging, where the lattice structure of image elements is
exploited to solve otherwise ill-posed problems such as denoising, segmentation
or registration. In linear modeling, more complex types of structured approaches
have been proposed that exploit known regularities of the data such as sparsity or
group structure. In work that is most related to the proposed method, Grosenik
et al. [8] exploit the underlying spatial coherence of fMRI to predict subjects’
behavior by solving the regularized linear least squares problem

argmin
β
‖Xβ − y‖22+λ1‖β‖1+λ2‖βTGβ‖ (2)

where G is a graph representing the connections between voxels of the fMRI
volume.

Spatially Smooth Gompertz Models A common measure of smoothness of
a function f : Rn → Rm is the sum of all its unmixed second partial derivatives,

which define the Laplace operator ∆f =
∑n
i=1

∂2f
∂x2

i
. In the discrete space of values



observed on a graph G, an analoguous operator can be defined as L = D − A,
where D is the diagonal matrix of the degrees of the nodes in the adjacency
matrix A.

We introduce this prior into the non-linear problem of fitting a set of growth
models represented as Gompertz functions to observations obtained at locations
corresponding to nodes in a graph G. As in [8], we encourage spatial smoothness
of the model parameters in G by solving

argmin
β

∑
n

‖β(1,n) + β(2,n) exp(− exp(−β(3,n)(t− β(4,n))))− y(t,xn)‖22

+ λ‖βT (L⊗B)β‖
(3)

where β = (β(1,1), . . . , β(4,1), . . . , β(1,n), . . . , β(4,n)) and y(t,xn) is a measure-
ment at location xn at time t. Introducing the diagonal matrix B ∈ R4×4 allows
us to selectively penalize spatial variablity of specific model parameters. For ex-
ample, setting B = diag

(
0, 0, 1, 1

)
adds costs for the rate and timing of growth,

but not its amplitude. We solve Equation 3 for observed data y using constrained
optimization to ensure β(3,·) > 0.

3 Data, Cortical Segmentation, and Tracking

Obtaining surface models of the fetal brain from fetal MRI requires a sequence
of processing steps. Artefacts due to fetal motion during the acquisition are
mitigated by using fast Rapid Acquisition with Refocused Echoes (RARE) T2
sequences [9] at increased (3-4mm) slice thickness. To avoid the loss of important
anatomical information due to this strong anisotropy, orthogonal views in axial,
coronal and sagittal direction are acquired and fused into an isotropic, high-
resolution (HR) volume [2].

Cortical Segmentation We use probability maps of brain tissues provided
with a publicly available atlas of fetal brain anatomy [10] to initialize a graph-
based segmentation procedure [11]. Atlas alignment is performed using affine
and non-rigid registration, initialized using fiducials placed at the distal horns
of the lateral ventricles. The resulting segmentation is split at the interhemi-
spheric fissure and an estimate of the gray/white matter boundary in each
hemisphere is computed using marching cubes. A spherical parametrization of
the resulting surface mesh is then computed [12] and used to obtain an ini-
tial regular sampling S0 = (V0, F0){l,r}, |V0|= 642, |F0|= 1280 of each cortical
surface. The surface mesh of each hemisphere is deformed towards the darkest
part of the cortical band using an active contour model while avoiding self-
intersections. We proceed in a multi-resolution manner using recursive icosa-
hedral subdivisions. This procedure stops after 3 subdivisions, yielding surface
meshes S3 = (V3, F3){l,r}, |V3|= 40962, |F3|= 81920.



Surface Normalization Comparing the surfaces of different cases requires
their point-wise correspondence. We employ a spectral graph matching tech-
nique [13] to establish inter-patient correspondences. To ensure compatibility
over the whole course of development, we first perform surface extraction on
the atlas volumes of [10] and compute pair-wise correspondences between the
models obtained for subsequent weeks as described in [14]. We then perform
spectral matching between each individual case and its age-matched reference
surface. After normalization, we compute the surface area of each face in F3

using Heron’s formula. As Fn+1 is a complete subdivision of Fn, we can directly
integrate these measurements over the faces of F0 to reduce computational com-
plexity. Note that this is not identical to computing the area of F0 directly.

4 Results

We performed the described reconstruction, segmentation and matching proce-
dure on 88 fetal MRIs obtained from routine clinical evaluations at the General
Hospital of Vienna. The gestational age in days (GW+d, or GD) of the individ-
ual cases has been assessed based on the last menstrual cycle of the mother. The
dataset spans the whole second trimester from GW 19+5 to GW 36+5 (mean
GD 201.76±35.34). None of the cases showed any neurological pathologies.

A continuous model of fetal cortical expansion We fit both independent
and graph-regularized1 Gompertz models to measurements of local surface area
of corresponding faces in the 88 surface models. Due to differences in the size of
the surface elements in the triangulation (Figure 1(b)), we enforce smoothness
only on the growth rate β(3,·) and inflation time-point β(4,·) by setting B in
Equation 3 accordingly.

Inter-patient variability as well as inconsistencies in the segmentation and
matching procedures lead to considerable noise when measuring the local sur-
face area (Figure 1). Thus, fitting independent growth models at each location
x can yield physiologically meaningless measurements. This is clearly visible
in Figure 1(a), where the time-courses of development estimated via the fitted
models vary considerably in neighboring surface patches. Using the proposed
graph-regularized model on the other hand (Figure 1(c)) has the expected effect
of finding locally similar models that still fit the data well. We assesed model
fit by computing R2 values for both the individual (R2 = 0.75) and regularized
(R2 = 0.74) model, which yielded only a negligeable (95% CI [9 · 10−3, 1 · 10−2])
decrease for the regularized model. Lower model fit could be expected due to
the added regularization term in Equation 3. The small difference however shows
that the proposed hypothesis of a smooth developmental process of fetal cortical
expansion can indeed be experimentally validated.
A major advantage of logistic models are their interpretable parameters. Reg-
ularization plays an important role of providing more robust measures of these

1 The choice of the regularization weight λ is described in the next section.
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(a) Unregularized model fit (b) Avg. surface model
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(c) Regularized model fit

Fig. 1. Comparison between unregularized and regularized model fit showing higher
similarity of local cortical expansion models at neighboring cortex points after regular-
ization.

factors by reducing the influence of spurious measurements on the model fit.
Figures 2-4 show this effect when modeling fetal cortical expansion. The relative
increase in cortical surface area (Figure 2) corresponds well to published results
on the global cortical expansion [5, 6] and due to our choice of B remains largely
unaffected by the regularization. On the other hand, both the time-point of max-
imal cortical expansion (Figure 3) and the rate of growth (Figure 4) show the
expected effect of the regularization removing physiologically implausible results
such as an inhomogenous time-course of operculization or an inhomogeneous ex-
pansion pattern in the insula.
Note however that the regularized model fit does not simply correspond to
smoothing the parameters of the unregularized model on the surface mesh. This
is apparent in the absence of the distinctive blurring effect of high values af-
fecting its neighbors, as for example in the expansion rate at the level of the
right middle frontal gyrus (Figure 4) or in the expansion time-point of the right
superior frontal sulcus (Figure 3).

(a) Unregularized model (b) Regularized model

Fig. 2. Percentual increase in cortical surface area from GW 20 to GW 35. Due to the
design of B, this component is largely unaffected by regularization.



(a) Unregularized model (b) Regularized model

Fig. 3. Time-point (GW) of maximal expansion. Regularization removes inconsisten-
cies in regions exhibiting linear growth (cf. Figure 4) and the recovers the known
pattern of early expansion in central cortical regions [3].

(a) Unregularized model (b) Regularized model

Fig. 4. Expansion rate. Distinctive expansion of the left inferior parietal lobule is robust
with respect to regularization, while values in the insula is homogenized.

Predicting gestational age from cortical surface area Given a measure-
ment of local cortical surface area and a fitted model β1...4, the inverse of the
Gompertz model can be used to estimate the gestational age of a fetus2 . We
evaluate the validity of models obtained with λ ∈ [0, 0.1, 0.5, 1, 2, 5, 10] using
Leave-One-Out Cross-Validation (LOOCV). By averaging all predictions of the
models, we achieved an overall error of 5.70±4.49 days in the unregularized case.
The best results using regularized models were obtained using λ = 5, yielding a
prediction error of 5.70 ± 4.37 days. Although these differences are not signifi-
cant, the regularized model is much easier to interpret. This shows that spatial
smoothness is an adequate prior for fetal cortical expansion and helps in build-
ing descriptive, interpretable growth models. Prediction accuracy in both cases
is also much higher as for instance in [7] where the authors used global cortical
surface curvature measurements instead of local ones. We plot the GWs esti-
mated using the regularized model against the true GWs in Figure 5(a), along
with their 0.95-th quantiles over all model faces. Comparing the error rates for
the left and right hemispheres shows an increase in variability with age that is
higher in the left than the right hemisphere.
Finally, the proposed method allows for the point-wise evaluation of the predic-
tion error (Figure 5(b)). This enables us to distinguish regions that are stable
predictors of age, such as the parietal lobe, the prefrontal cortex and the callosal

2 The inverse of Equation 1 is given as t = f−1(y) = − log(− log((y−β1)/β2))
β3

+ β4



area. We performed an exhaustive search over percentiles of face-wise LOOCV
prediction errors in the range of [0.01, . . . , 1] to determine a threshold defining
regions predictive of gestational age. The best prediction was obtained by re-
taining all faces that have a mean prediction error below 11.79 days (GW 1+5,
0.05-th quantile for λ = 5), Figure 5(b). By averaging the prediction in these
regions, the error is reduced significantly to 4.65± 3.58 days (p < 0.05). The ac-
curacy of these results is in the order of the underlying uncertainty of reported
last menstrual cycle and comparable with state of the art results in [15] as well
as manual measurements [4].

5 Conclusion

We have proposed a novel method for fitting spatially regularized growth models
to noisy data. Applying this method in the challenging setting of fetal brain
development enables building accurate interpretable models of cortical expansion
in utero, and allows for the point-wise estimation of gestation age. We have shown
that the resulting models are in line with published knowledge about fetal brain
growth and are able to predict the age of the fetus with high accuracy. We believe
that the presented method is of significant value in deepening the understanding
of the time-course of neuroanatomical development, as well as allowing for the
precise localization and characterization of its vulnerabilities.
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Fig. 5. Results of LOOCV age prediction from local cortical surface area.
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